Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

Engineering Physics

Course Code		20BS1103		Yea	Year		I		Sem	Semester		I		
Course Category		Basic Science		Bran	Branch]	T	Cou	rse Type		Theory		
Credits			3	3	L-T	L-T-P			0-0	Prer	Prerequisites		Nil	
Continuous			30		_	Semester End		70			Total		100	
Intern	nal				Eval	Evaluation				Mar	Marks			
Evalu	atio	n												
Course Outcomes														
Upon successful completion of the course, the student will be able to														
CO1	Understand the electric, magnetic, optical communication and semiconductor principles in													
		technical aspects. (L2)												
CO2		Apply the knowledge of Physics and optical Principles in optoelectronic devices. (L3)												
CO3	_	Apply basic laws of electromagnetism and materials for engineering applications. (L3)												
CO4		Analyze the theory of solids and deduce different analytical parameters. (L4)												
CO5		Examine the mechanism of electromagnetic, in sensors and semiconductor devices. (L4)												
CO6		Ability to understand the concepts of optical fibers, the theory of solids, laws of												
electromagnetism, principles of semiconductor devices and submit a report. Contribution of Course Outcomes towards achievement of Program Outcomes &														
		ZOIILI IL								edium, 1		Outcon	iics &	
	PO	l PO2				PO6			PO9	PO10		PO12	PSO1	PSO2
CO1		1 0 0	100	10.	100	100	101	100	10)	1010	1011	1012	1201	1202
CO2	3													
CO3	3													
CO4		3												
CO5		3												
CO6									2	2		2		
								abus						
Unit N	Vo.						Syllabı						Mappe	d CO's
1											princip		CO1	GO2
	structure, acceptance angle, numerical aperture, modes of propagation, classification of fibers, fiber optic communication, fiber optic CO5, CO6													
			s (Temp								C		CO3, C	.00
2			ctric an					orce),	аррпсс	ttions.				
_								lectron	ic po	larizatio	n, diel	ectric		
									_		polariza			
		(Qua	itative),	frequer,	icy d	lependo	ence	of po	olarizat	tion, L	orentz	field	CO1	CO3
	(quantitative), requency dependence of polarization, Eorenz field CO1,CO3 (quantitative), Clausius-Mossotti equation.													
	Magnetic materials: Introduction, magnetic dipole moment,										CO0			
	magnetization, magnetic susceptibility and permeability, origin of													
	permanent magnetic moment, classification of magnetic materials, domain theory, hysteresis, soft and hard magnetic materials.													
2					ott and	nard n	nagneti	c mate	rials.					
3			romagi rostatic		Floor	rio no	tantial	Coul	ombo	lass one	l Gonco	10337	CO^{1}	CO2
	Electrostatic field: Electric potential, Coulombs law and Gauss law, derivation of Coulombs law from Gauss law, applications of Gauss law								CO1,CO3 CO5, CO6					
	(line charge, thin sheet of charge and solid charged sphere), Gauss law of						CO3,	200						
		(11110		VIIII 011	01	Jimigo	una s	J110 C11	argou i	P11010),	Suubb II	A 11 OI		

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

		electrostatics in dielectric medium, Poisson's and Laplace equations. Magnetostatic field: Bio-Savart law, Faraday's and Ampere's laws in integral and differential form, displacement current, continuity equation					
		and Maxwell's equations (qualitatively).					
-	4	Semiconductor Physics Introduction, origin of energy band, intrinsic and extrinsic semiconductors, generation and recombination, carrier concentration in intrinsic semiconductors, variation of Fermi level with temperature in intrinsic semiconductor, n-type and p-type semiconductors, carrier concentration in n type and p type semiconductors, variation of Fermi level with temperature in extrinsic semiconductors.	CO1,CO3, CO4, CO6				
	5	Semiconductor Devices Drift and diffusion currents in semiconductors, Hall effect and its applications, p-n junction diode formation and V-I characteristics, direct and indirect band gap semiconductors, construction and working of photodiode, LED, solar cell	CO1, CO2, CO5, CO6				
		T . Th					

Learning Resources

Text Books

- 1. R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Edition, 2001.
- 2. S. O. Pillai, Solid State Physics, New age international publishers, 7th edition (2016)

Reference Books

- 1. A Text Book of Engineering Physics, M.N.Avadhanulu & P.G.Kshrisagar, S.Chand Publications, fourth edition, 2014.
- 2. Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.
- 3. Applied Physics, P.K. Palanai Swamy, Sci-Tech Publications. December, 2018
- 4. Engineering Physics, Dr.M.Arumugam, Anuradha Publications, Second edition, 2005.
- 5. Introduction To Electrodynamics, David.J.Griffths, Pearson Education India Learning Private Limited, Fourth edition, 2015.

e- Resources & other digital material

- 1. http://physicsforidiots.com/physics/electromagnetism/
- 2. https://www.arcelect.com/fibercable.htm
- 3. http://freevideolectures.com/Course/3048/Physics-of-Materials/36
- 4. https://www.iitk.ac.in/mse/electronic-materials-and-devices
- 5. https://link.springer.com/chapter/10.1007/978-3-319-48933-9_35